Dodecamethoxy- and Hexaoxotricyclobutabenzene: Synthesis and Characterization

Toshiyuki Hamura, Yousuke Ibusuki, Hidehiro Uekusa, Takashi Matsumoto, Jay S. Siegel, ${ }^{\dagger}$ Kim K. Baldridge, and Keisuke Suzuki*
Interactive Research Center of Science, Department of Chemistry, Tokyo Institute of Technology, SORST, Japan Science and Technology Corporation (JST), O-okayama, Meguro-ku, Tokyo 152-8551, Japan, and the Institute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich CH-8057, Switzerland

Received June 9, 2006; E-mail: ksuzuki@chem.titech.ac.jp

The idea that annulation of a small ring onto benzene would induce bond-length alternation by trapping out one Kekulé resonance structure is a provocative concept for chemists. ${ }^{1}$ Tricyclobutabenzene (TCBB) Ia ${ }^{2}$ serves as a key model compound in this discussion, to which cognates, such as halo-substituted derivatives Ib, If,,${ }^{3,4}$ hexamethylene derivative $\mathbf{I I},{ }^{5}$ and triangular [4]phenylene derivative III, ${ }^{6}$ are compared.

la: $X=Y=H$
lc: $X=B r, Y=H$

We report the syntheses of two new cognates, dodecamethoxyTCBB 1 and hexaoxo-TCBB 2, via 3-fold [2+2] cycloadditions of benzyne and ketene silyl acetals (KSAs). ${ }^{7}$ The present synthesis overcomes numerous issues in previously reported synthesis of TCBBs ${ }^{8}$ and uses the selectively protected 2-iodophloroglucinol derivative $\mathbf{3}$ as a novel synthetic equivalent of benztriyne IV. Intermediate $\mathbf{3}$ has advantages for the rapid and regioselective annulation of three fully functionalized four-membered rings as in $\mathbf{1}$ and $\mathbf{2}$.

The first cycloaddition occurred by treatment of iodotriflate $\mathbf{3}^{9}$ with n-BuLi in the presence of KSA 4a to give a single cycloadduct, which was converted to bromotosylate $\mathbf{5}$ by selective hydrolysis of the aryl silyl ether followed by the dibromination and tosylation (Scheme 1). The high regioselectivity of this first [2 + 2] cycloaddition could be rationalized by the directing effect of the siloxy group as described before. ${ }^{7}$

Benzyne A, generated from 5, cleanly underwent the second [2 +2] cycloaddition with KSA 4a to give cycloadduct $\mathbf{6}$ in 54% yield. ${ }^{10}$ Key features of this process include the following: (1) halogen-lithium exchange of $\mathbf{5}$ exclusively occurred at the bromine atom between the electron-withdrawing toluenesulfonate and the benzyloxy group, generating benzyne \mathbf{A} selectively without losing the C 4 bromide, ${ }^{11}$ (2) highly regioselective cycloaddition gave $\mathbf{6}$ exclusively, which was interesting in its own right, as we recently reported that a four-membered ring also has a powerful directing effect in the benzyne cycloaddition (Figure 1). ${ }^{12}$ The regioselectivity issues raised a question of which is the more influential directing

[^0]Scheme 1^{a}

${ }^{a}$ Reagents and conditions: (a) $\mathbf{4 a}, n-\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$; (b) aq. $\mathrm{KF}, n-\mathrm{Bu}_{4} \mathrm{NCl}, \mathrm{CH}_{3} \mathrm{CN}, 0 \rightarrow 25^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (c) NBS, $i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (d) $\mathrm{TsCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $25^{\circ} \mathrm{C}$, $10 \mathrm{~h}(\mathbf{5}: 48 \%, 4$ steps); (e) 4a, n-BuLi, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}\left(6: 54 \%\right.$, syn/anti $=1.5: 1$); (f) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$, EtOAC, $25^{\circ} \mathrm{C}$; (g) $\mathrm{TsCl}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, $25^{\circ} \mathrm{C}, 10 \mathrm{~h}$ (7-syn: $83 \%, 2$ steps, 7-anti: $81 \%, 2$ steps).
groups. To address this, the structure of $\mathbf{6}$ was determined by X-ray analysis after converting to the bromotosylate 7, confirming that the directing ability of the benzyloxy group overrides that of the four-membered ring.
a) alkoxy directed
b) strain induced
c) mixed system
(alkoxy vs four-membered ring)

Figure 1. Regioselectivity of substituted benzynes.
Bromotosylate 7 was subjected to the third [2+2] cycloaddition with KSA 4b, furnishing fully oxygenated tricyclobutabenzene $\mathbf{8}$ in 51% yield (Scheme 2). Amazingly, the cycloaddition was highly regioselective, giving cycloadduct $\mathbf{8 a}$ as the major regioisomer, along with a small amount of minor regioisomer $\mathbf{8 b}$. The structure

Scheme 2^{a}

[^1]10.1021/ja064063e CCC: $\$ 33.50$ © 2006 American Chemical Society

Figure 2. Molecular structure of 1. Selected expt1 ${ }^{13}$ [calcd $\left.{ }^{14}\right]$ distances (\AA) and angles $\left({ }^{\circ}\right): \mathrm{C}_{1}-\mathrm{C}_{2} 1.389(2)$ [1.390], $\mathrm{C}_{1}-\mathrm{C}_{6} 1.396(2)$ [1.399], $\mathrm{C}_{1}-$ $\mathrm{C}_{1 \mathrm{~A}} 1.523(2)$ [1.530], $\mathrm{C}_{6}-\mathrm{C}_{6 \mathrm{~A}} 1.529(2)$ [1.530], $\mathrm{C}_{1 \mathrm{~A}}-\mathrm{C}_{6 \mathrm{~A}} 1.614(2)$ [1.623]; $\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{2} 120.2(1)$ [120.0], $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3} 119.8(1)$ [120.0], $\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{C}_{6 \mathrm{~A}}$ 94.0(1) [94.2], $\mathrm{C}_{6}-\mathrm{C}_{1}-\mathrm{C}_{1 \mathrm{~A}} 94.1$ (1) [94.2], $\mathrm{C}_{1}-\mathrm{C}_{1 \mathrm{~A}}-\mathrm{C}_{6 \mathrm{~A}} 86.0$ (1) [85.8], $\mathrm{C}_{6}-\mathrm{C}_{6 \mathrm{~A}}-\mathrm{C}_{1 \mathrm{~A}} 85.7(1)$ [85.8].

Figure 3. ${ }^{13} \mathrm{C}$ NMR spectra of $2\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{SO}_{4}, \mathrm{TMS}\right.$ as reference).
of 8a (syn/anti stereoisomers) was unequivocally assigned through derivatization to the corresponding triketone 9 by two-step hydrolysis [(i) $\mathrm{TsOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}$; (ii) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$, $\left.-78 \rightarrow 25^{\circ} \mathrm{C}\right] .{ }^{9}$ This high regioselectivity $(\mathbf{8 a} / \mathbf{8 b}=6: 1)$ is striking in view of the pseudo-symmetric oxygenation pattern of benzyne B having two four-membered rings with high symmetry, where the difference in both rings appears to be small. Cycloadduct 8 could also be converted to the symmetrical hexakis(dimethyl)acetal 1 under acidic conditions.

Acetal 1 gave single crystals suitable for X-ray analysis (slow crystallization, hexane, EtOAc, $-15^{\circ} \mathrm{C}$). The central benzene ring of $\mathbf{1}$ is planar, and the all internal angles are almost 120° (Figure 2). ${ }^{13}$ The average $\mathrm{C}-\mathrm{C}$ bond length in the central benzene ring Q $=1.394 \AA$ (exptl) $[1.395 \AA$ (calcd) $]$, and the endo/exo bond lengths were essentially the same (endo $1.396 \AA$ /exo $1.392 \AA$ exptl) [endo $1.399 \AA$ /exo $1.390 \AA$ (calcd)]; $\delta_{\text {endo-exo }}=0.004 \AA[0.009 \AA] .{ }^{14}$

Experimental/computational structures show a decrease in Q and δ as a function of the electronegativity of rim atoms in $\mathbf{I a}-\mathbf{1}-\mathbf{I b}$: $Q=1.401,1.394,1.389 \AA ; \delta=0.023,0.004,-0.006 \AA$. Various explanations exist for this effect. ${ }^{15}$ NMR computations for $\mathbf{1}$ (146.8, $114.6,56.3 \mathrm{ppm})$ match well the observed ${ }^{13} \mathrm{C}$ spectrum (141.0, $111.0,51.7 \mathrm{ppm})$. Thus, structures and properties of these compounds are well predicted computationally.

Hexaoxo-TCBB 2 was observed for the first time by cleavage of hexaacetal 1 with concentrated sulfuric acid. ${ }^{16}$ The ${ }^{13} \mathrm{C}$ NMR in $\mathrm{D}_{2} \mathrm{SO}_{4}$ showed that all acetal functionalities were cleanly removed to give quantitatively the characteristic peaks of the 1,2-dione moiety (189 and 173 ppm) expected for ketone 2 [194.2 and 179.1 (calcd) $]^{14}$ (Figure 3). Methanol (62 ppm) was generated during the deprotection of $\mathbf{1}$.

The computationally predicted structure of 2 is planar with an average benzene bond length $Q=1.402 \AA$ and a bond alternation $\delta=0.002_{3} \AA($ exo $=1.401(4) \AA$; endo $=1.403(7) \AA) \cdot{ }^{14,17}$ Although the related II with exo methylene groups displays essentially the same average bond length $Q=1.405 \AA$, the bond alternation $\delta=$ $0.045(8) \AA($ exo $=1.382(1) \AA$; endo $=1.427(9) \AA)$ is much larger. Notable also is the longer $C-C$ bond length between the carbonyls of $2(1.592 \AA)$ versus that between the methylenes of II ($1.513 \AA$). These trends are already seen in the simple cyclobutenes and will form the basis for a future paper.

Acknowledgment. We thank Prof. Yves Rubin, UCLA, for helpful discussions. This research was partially supported by the 21st Century COE program, a Grant-in-Aid for Young Scientists (B), and the Swiss National Fund.

Supporting Information Available: General procedures, spectral data for compounds $\mathbf{1}, \mathbf{3}$, and $\mathbf{5 - 9}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Siegel, J. S. Angew. Chem., Int. Ed. Engl. 1994, 33, 1721-1723. (b) Frank, N. L.; Siegel, J. S. In Advances in Theoretically Interesting Molecules; Thummel, R. P., Ed.; JAI Press: Greenwich, CT, 1995; Vol. 3, pp 209-260.
(2) (a) Nutakul, W.; Thummel, R. P.; Taggart, A. D. J. Am. Chem. Soc. 1979, 101, 770-771. (b) Doecke, C. W.; Garratt, P. J.; Shahriari-Zavareh, H.; Zahler, R. J. Org. Chem. 1984, 49, 1412-1417. (c) Boese, R.; Bläser, D.; Billups, W. E.; Haley, M. M.; Maulitz, A. H.; Mohler, D. L.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1994, 33, 313-317.
(3) Camaggi, G. J. Chem. Soc. C 1971, 2382-2388. (b) Thummel, R. P.; Korp, J. D.; Bernal, I.; Harlow, R. L.; Soulen, R. L. J. Am. Chem. Soc. 1977, 99, 6916-6918.
(4) Stanger, A.; Ashkenazi, N.; Boese, R.; Bläser, D.; Stellberg, P. Chem.Eur. J. 1997, 3, 208-211.
(5) Kawase, T.; Minami, Y.; Nishigaki, N.; Okano, S.; Kurata, H.; Oda, M. Angew. Chem., Int. Ed. 2005, 44, 316-319.
(6) (a) Diercks, R.; Vollhardt, K. P. C. J. Am. Chem. Soc. 1986, 108, 31503152. (b) Mohler, D. L.; Vollhardt, K. P. C.; Wolff, S. Angew. Chem., Int. Ed. Engl. 1990, 29, 1151-1153. (c) Boese, R.; Matzger, A. J.; Mohler, D. L.; Vollhardt, K. P. C. Angew. Chem., Int. Ed. Engl. 1995, 34, 14781481 .
(7) (a) Hosoya, T.; Hamura, T.; Kuriyama, Y.; Matsumoto, M.; Suzuki, K. Synlett 2000, 520-522. (b) Hamura, T.; Hosoya, T.; Yamaguchi, H.; Kuriyama, Y.; Tanabe, M.; Miyamoto, M.; Yasui, Y.; Matsumoto, T.; Suzuki, K. Helv. Chim. Acta 2002, 85, 3589-3604.
(8) Hamura, T.; Ibusuki, Y.; Uekusa, H.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 2006, 128, 3534-3535.
(9) For details, see Supporting Information.
(10) The reaction was performed in dilute solution because of the poor solubility of bromotosylate 5 in $\mathrm{Et}_{2} \mathrm{O}$. Choice of the leaving group was also important. For example, the reaction of the corresponding bromotriflate gave low yield of the cycloadduct 6 . The same situation was observed for the third $[2+2]$ cycloaddition of 7 .
(11) Recently, related chemoselective generation of polyfunctionalized arynes by I/Mg exchange of 2-iodophenyl sulfonates was reported. See: Sapountzis, I.; Lin, W.; Fisher, M.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 4364-4366.
(12) Hamura, T.; Ibusuki, Y.; Sato, K.; Matsumoto, T.; Osamura, Y.; Suzuki, K. Org. Lett. 2003, 5, 3551-3554.
(13) Crystallographic data for 1: $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{12}, \mathrm{MW}=516.53$, colorless crystal, $0.38 \times 0.20 \times 0.08 \mathrm{~mm}$, monoclinic, space group $P 2_{1} / c, Z=4, T=$ 93(2) K, $a=12.3650(13), b=10.4112(7), c=22.0747(16) \AA, \beta=$ $115.171(6)^{\circ}, V=2571.9(4) \AA^{3}, \lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA, \mu=0.107 \mathrm{~mm}^{-1}$. Intensity data were collected on a Bruker SMART 1000 diffractometer. The structure was solved by direct methods and refined by the full-matrix least-squares on F^{2} (SHELXL97). A total of 45417 reflections were measured and 5897 were independent. Final $R 1=0.0472, w R 2=0.1170$ (4999 refs; $I>2 \sigma(I)$), and GOF $=1.055$ (for all data, $R 1=0.0570, w R 2$ $=0.1218$).
(14) Computations: B3LYP ${ }^{14 \mathrm{a}}$ DFT and MP2 ${ }^{14 \mathrm{~b}}$ methods were employed, using GAMESS ${ }^{14 \mathrm{c}}$ and GAUSSIAN. ${ }^{14 \mathrm{~d}}$ As substantiated, previously optimized geometries were obtained with B3LYP/cc-pVDZ. ${ }^{14 e}$ Subsequent single point GIAO chemical shielding computations ${ }^{14 \mathrm{f}}$ relative to TMS were performed using the $\mathrm{DZ}(2 \mathrm{~d}, \mathrm{p})$ basis set. ${ }^{14 \mathrm{~g}}$ Since B3LYP is known to overestimate the deshielding contributions to the chemical shielding tensor in cases when electron correlation is important, MP2 was also used. (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785-789. (b) Moller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618. (c) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Elbert, S. T. J. Comput. Chem. 1993, 14, 1347. (d) Frisch, M. J.; et al. GAUSSIAN 03; Gaussian, Inc.: Pittsburgh, PA, 2003. (e) Dunning, T. H., Jr.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, H. F., III, Ed.; Plenum: New York, 1976; Vol. 3, p 1. (f) Becke, A. D. J. Chem. Phys. 1993, 98, 56485652. (g) Gauss, J. Chem. Phys. 1993, 99, 3629.
(15) (a) Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 1992, 114, $9583-$ 9587. (b) Baldridge, K. K.; Siegel, J. S. J. Am. Chem. Soc. 2002, 124, 5514-5517. For another explanation, see: (c) Stanger, A. J. Am. Chem. Soc. 1998, 120, 12034-12040.
(16) Rubin, Y.; Knobler, C. B.; Diederich, F. J. Am. Chem. Soc. 1990, 112, 1607-1617. Protonation of 2 has little effect on the chemical shift, compared to the previously reported tetraketone derivative; see ref 8 .
(17) Selected geometries for 2: $\mathrm{C}-\mathrm{C}_{\text {endo }} 1.403(7) \AA, \mathrm{C}-\mathrm{C}_{\text {exo }} 1.401(4) \AA, \mathrm{C}_{\mathrm{ar}}-$ $\mathrm{C}_{\mathrm{CO}} 1.519(3) \AA, \mathrm{C}_{\mathrm{CO}}-\mathrm{C}_{\mathrm{CO}} 1.592(9) \AA, \mathrm{C}=\mathrm{O} 1.188(5) \mathrm{A} ; \mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}$ $120.0^{\circ}, \mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{co}} 93.57^{\circ}, \mathrm{C}_{\mathrm{ar}}-\mathrm{C}_{\mathrm{CO}}-\mathrm{C}_{\mathrm{CO}} 86.43^{\circ}, \mathrm{C}_{\mathrm{CO}}-\mathrm{C}_{\mathrm{CO}}-\mathrm{O}_{\mathrm{CO}}$ 136.69°.
JA064063E

[^0]: \dagger Visiting professor (Jan. 1-Mar. 31, 2005) on leave from University of Zürich.

[^1]: ${ }^{a}$ Reagents and conditions: (a) $\mathbf{4 b}, n-\mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$ (8: 51% from 7-syn, $\mathbf{8 a} / \mathbf{8 b}=6: 1$); (b) $(\mathrm{MeO})_{3} \mathrm{CH}$, TsOH, $\mathrm{MeOH}, 60^{\circ} \mathrm{C}(\mathbf{1}: 51 \%$ from
 7-syn, 56% from 7 -anti, 2 steps).

